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ABSTRACT 

Linear modulation schemes such as phase shift keying (PSK) and quadrature 

amplitude modulation (QAM) are inherently spectrally efficient. This research seeks 

enhanced spectral efficiency by designing new spectrally efficient pulse shapes for such 

digital modulations.  The pulses designed are of finite duration and exhibit zero 

intersymbol interference when received through an additive white Gaussian noise 

(AWGN) channel. It is shown that the resulting communications signals have optimal 

spectral roll-off while maintaining optimum bit error ratio performance when received 

via an AWGN channel.  The bandwidths and power spectral densities of communications 

signals using these pulses are compared with traditional spectrally efficient 

communications signals.  
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EXECUTIVE SUMMARY 

Achieving spectral efficiency in a bandlimited environment is of utmost 

importance for high data rate digital communications, especially in today's Network 

Centric Warfare (NCW) communications architecture. NCW is an evolution from 

platform centric warfare to fully connected platform entities where information is shared 

and optimum decisions are made in a time efficient manner. This translation of 

informational supremacy to combat superiority critically relies on the timely and 

successful exchange of command and control, intelligence, surveillance, and 

reconnaissance information among the integrated entities in this modern battlespace. Due 

to the mobility military operations require, much of this communications must be done by 

radio. “A Picture paints a thousand words” and intelligence, surveillance, and 

reconnaissance is no exception. Inevitably, much of the information is imagery, video, or 

otherwise involves large amounts of data and thus requires high data rates for real time 

operations and increased situation awareness. However, the radio spectrum is in limited 

supply for both terrestrial and satellite communications, and consequently bandwidth is a 

scarce resource. In this crowded spectrum, we aim to achieve a high data rate with a 

small allocated channel bandwidth. Accordingly, this thesis explores a means to increase 

the data rate per unit bandwidth for enhanced NCW capability.  

Digital modulation schemes like Phase Shift Keying (PSK) and Quadrature 

Amplitude (QAM) are the popular choices for such application due to their inherent 

bandwidth efficiency. Bandwidth efficiency, which is commonly expressed as a measure 

of the ratio of data rate to bandwidth occupancy of the signal, can be achieved either 

through increasing the number of bits per symbol or via pulse shaping. In view of the fact 

that the former also leads to an increase in bit error rate, this thesis explores the latter to 

methodologically devise new pulse shapes that are of finite time duration, exhibit zero 

intersymbol interference (ISI), and are optimally bandwidth efficient in terms of first null 

bandwidth, fractional power bandwidth, and spectral roll-off while maintaining optimum 

bit error ratio performance when received via an additive white Gaussian noise (AWGN) 

channel.  



                                                                 
                                                                                                            

 xvi

The pulses are designed by expressing an arbitrary pulse shape in terms of many 

unknowns, and solving for those unknowns by applying the appropriate constraints to 

guarantee finite duration of each pulse, zero intersymbol interference when received in an 

AWGN channel, and high spectral efficiency. The three main design constraints applied 

are periodic complex Fourier series representation of the pulse (to allow for arbitrary 

shape while maintaining mathematical structure), shift orthonormality condition between 

pulses (to ensure zero intersymbol interference), and designing the pulse with as many 

continuous temporal derivatives as possible (to ensure steep spectral roll-off).  

This thesis has successfully shown a methodology to design finite duration pulses 

with first null bandwidths as well as fractional power bandwidths between half the 

symbol rate (0.5 / )T  and the symbol rate (1/ )T  and to achieve the optimum spectral roll-

off for a given first null bandwidth. Additionally, these pulses exhibits zero ISI and low 

susceptibility to jitter. These pulses would be useful in any PSK or QAM system. The 

methodology is very general and can result in an infinite number of combinations of 

pulse durations, first null bandwidths, fractional power bandwidth, and spectral roll-offs, 

giving the designer a large trade space in which to trade one parameter against another to 

achieve design goals. Design examples with excellent combinations of first null 

bandwidths, fractional power bandwidth, and spectral roll-off are demonstrated herein 

using the pulse design methodology. Additionally, the spectral occupancy of these pulses 

was compared with that of root raised cosine pulses truncated to the same length with 

favorable results.  

Since one of the design constraints is quadratic in terms of the unknowns 

describing the pulse shapes and since our solutions are only approximate, there is no 

guarantee, and indeed it is unlikely, that the solutions presented herein are unique. More 

work is needed to determine if simpler pulses can match the spectral desirability for the 

same pulse duration and the same number of unknowns. Also of interest would be 

investigation into the application of the additional constraint of low variation of 

instantaneous power, due to the effects of non-linear power amplifiers, as found in many 

communications systems. 
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I. INTRODUCTION 

Achieving spectral efficiency in a bandlimited environment is of utmost 

importance for high data rate digital communications, especially for today's Network 

Centric Warfare (NCW) communications architecture. NCW is an evolution from 

platform centric warfare to fully connected platform entities where information is shared 

and optimum decisions are made in a time efficient manner. This translation of 

informational supremacy to combat superiority critically relies on the timely and 

successful exchange of command and control, intelligence, surveillance, and 

reconnaissance information among the integrated entities in this modern battlespace. Due 

to the mobility military operations require, much of this communications must be done by 

radio. “A Picture paints a thousand words”, and intelligence, surveillance, and 

reconnaissance is no exception. Inevitably, much of this information is imagery or video 

or otherwise involves a high volume of data and thus requires high data rates for real time 

operations and increased situation awareness. However the radio spectrum is in limited 

supply for both terrestrial and satellite communications, and consequently bandwidth is a 

scarce resource. In this crowded spectrum, we aim to achieve a high data rate with a 

small allocated channel bandwidth. Accordingly, this thesis explores a means to increase 

the amount of data rate per bandwidth for enhanced NCW capability.  

Digital modulation schemes including Phase Shift Keying (PSK) and Quadrature 

Amplitude (QAM) are the popular choices for such application due to their inherent 

bandwidth efficiency. Bandwidth spectral efficiency is a measure of the ratio of data rate 

to bandwidth occupancy of the signal.  The bandwidth efficiency for such schemes can be 

achieved either through increasing the number of bits per symbol (k) or reducing the 

bandwidth occupancy of the signal via pulse shaping. In view of the fact that the former 

also leads to an increase in bit error rate, the author explores the latter to devise new pulse 

shapes in a methodical manner. 
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A. THESIS OBJECTIVE 

The objective of this research is to methodically devise new pulse shapes that are 

of finite duration, thus realizable, and have high spectral efficiency in terms of optimal 

spectral roll-off. The spectral performance of these new pulse shapes are compared to 

traditional pulse shapes including root raised cosine.  The corresponding eye-diagram has 

been generated to analyze its intersymbol interference and susceptibility to jitter. 

B. THESIS OUTLINE 

The remaining chapters of this thesis are as follows: Chapter II discusses the 

fundamentals of pulse shaping in digital communications in the context of a literature 

review of related works. Chapter III describes the design considerations in the 

development of the new pulses. Chapter IV presents the spectral efficiency, intersymbol 

interference, and sensitivity to jitter performances of the new pulses. Chapter V presents 

the bandwidth efficiency of the new pulses with respect to the fractional power 

bandwidth. Chapter VI concludes this study and recommends focus areas for future work 

in this area. 
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II. BACKGROUND AND LITERATURE REVIEW 

A bandpass communications signal is a random process. Many digital modulation 

schemes, including PSK and QAM, can be represented using complex envelope notation 

(i.e. less the carrier frequency component of communications signal) as  

 ( ) [ ] ( )
n

x t D n p t nT
∞

=−∞

= −∑  (2.1) 

where [ ]D n  is the discrete complex-valued symbol information transmitted, ( )p t  is the 

complex envelope of the pulse, and T  is the symbol duration. T  is defined as the time 

interval between start of successive pulses. The radio frequency (RF) communications 

signal ( )b t  in terms of the complex envelope notation is  

 ( ) ( ){ }Re ( )exp 2 cb t x t j f tπ=  (2.2) 

where cf  is carrier frequency. 

 The signal bandwidth, which is defined as the spectral occupancy of signal 

containing significant power, is measured from the power spectral density of the signal. If 

[ ]D n  is independent and identically distributed (iid), the power spectral density of ( )x t  

from [1] is  

 ( ) ( )
22 2

2

2
D D

xx
m

m mS f P f P f
T T T T
σ µ δ

∞

=−∞

⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑  (2.3) 

where Dµ  and 2
Dσ  are the mean and variance of [ ]D n  respectively, ( )P f  is the Fourier 

transform of ( )p t , and ( ).δ  is the Dirac delta function. In the above equation, the 

second term of the right hand side represents the non-information bearing portion and this 

implies an inefficient use of signal power. In the usual case, Dµ  is zero, and therefore 

Equation (2.3) reduces to  

 ( ) ( )
2

2D
xxS f P f

T
σ

= . (2.4) 

Thus we can control the spectral characteristics of the signal ( )x t  by controlling the 

spectral characteristics of the pulse ( )p t . For a bandlimited channel of bandwidth B , we 
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would want to design a pulse whose spectrum is contained within the complex envelope 

bandwidth of / 2B  for reduced intersymbol interference.  

Phase Shift Keying (PSK) and Quadrature Amplitude Modulation (QAM) are 

popular modulation schemes in digital communications due to their inherent spectral 

efficiency. It is known from [1] that such modulation schemes’ performance measures of 

symbol error and bit error are dependent on the energy of the pulse and are independent 

of the shape of the pulse, provided intersymbol interference is zero or negligible. As 

such, the traditional pulse shapes like rectangular pulse, root raised cosine pulse, 

Gaussian, and the half-sine pulse shapes are customarily used in those modulation 

schemes.  

The rectangular pulse is of finite duration but is spectrally bandwidth inefficient. 

The root raised cosine and Gaussian pulse shapes are very bandwidth efficient in their 

infinite duration form, but they must be truncated to be realizable, thereby reducing their 

bandwidth efficiency. The expressions for the root raised cosine pulse in the time domain 

and the frequency domain are given in [2] as 

 ( ) ( ) ( ) ( )
( ) ( )2

4 / cos 1 / sin 1 /

/ 1 4 /
RC

t T t T t T
p t

t T t T

α π +α + π −α⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦=
⎡ ⎤π − α⎣ ⎦

 (2.5) 

 ( )

10
2

1 1 11 cos
2 2 2 2

10
2

RC

T f
T

T TP f f f
T T T

f
T

−α⎧ ≤ ≤⎪
⎪
⎪ ⎡ π −α ⎤ −α +α⎛ ⎞= + − < ≤⎨ ⎜ ⎟⎢ ⎥α ⎝ ⎠⎣ ⎦⎪
⎪ + α

>⎪
⎩

 (2.6) 

where α  is the roll-off factor. When truncated in time, the finite duration root raised 

cosine pulse in the time domain and frequency domains are 

 ( ) ( )' rect
'RC RC

tp t p t
T
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (2.7) 

where rect
'

t
T
⎛ ⎞
⎜ ⎟
⎝ ⎠

 is 1 when [ ]'/ 2, '/ 2t T T∈ − and 0 otherwise.  

 ( ) ( ) ( )' * 'sinc 'RC RCP f P f T T f= . (2.8) 
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Notice that the truncation in time is accompanied by a spreading out of energy in 

frequency as indicated by the convolution in Equation (2.8).  Not surprisingly, the 

truncated pulses have larger bandwidth than the untruncated pulses.  The bandwidth of 

the root raised cosine pulse is often controlled via the roll-off factor, [ ]0,1α ∈  with 

0α =  achieving the optimal bandwidth occupancy. When α  is small, the pulse exhibits 

higher amplitude sidelobes and longer tails in the time domain. Henceforth, when 

communicating using the truncated root raised cosine pulse with small α , the output of 

the matched filter receiver has prominent non-zero crossing error at the integer multiples 

of T , leading to intersymbol interference (ISI). (See Figure 1). [2]. 
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Truncated root raised cosine pulse with α  =  0
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T)
*p
′ R

C
*

(t/
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Result of convolution of two truncated root raised cosine pulse with α  =  0

 

Figure 1 Nonzero crossing error due to truncation of root raised cosine pulse. 

 

The half-sine pulse shape is more bandwidth efficient, but far from optimum. The 

measures of bandwidth efficiency that this thesis considers are small first null bandwidth, 

small fractional power bandwidth, and steep spectral roll-off.  
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To achieve zero ISI, the overall filter pulse response is  

 ( )
( ) 2

( ) ( )
overall

p t p tp t
p dτ τ

∗

∞

−∞

∗ −
=
∫

 (2.9) 

where ( )∗  is the complex conjugate of the pulse ( )p t . The overall filter pulse response 

for an optimum digital communications receiver of a complex envelope signal ( )x t  as 

defined in Equation (2.1) in an AWGN channel must satisfy the first Nyquist criteria,  

 ( )
1 0
0 0overall

n
p nT

n
=⎧

= ⎨ ≠⎩
 (2.10) 

( )overallp t  is known as the Nyquist pulse [1] [2]. Note that in this thesis, we are 

developing the new pulse ( )p t  such that ( )overallp t  fulfills the first Nyquist criteria. 

In [3], [4], [5], and [6], pulses are considered that are both bandwidth efficient and 

of finite duration. [3] uses an approach for continuous phase modulation that is similar to 

the approach used here for PSK and QAM. To achieve bandwidth efficiency and zero 

intersymbol interference, [3] applies the design considerations of phase shift 

orthogonality, and compact phase support (finite phase duration) to the phase of the 

modulated waveform.  The treatment in [4] and [5] is ad hoc, yielding sub-optimum 

results. [4] determines a specific time-bandwidth product for offset QPSK type pulses 

that achieves a near constant signal envelope via numerical analysis. The approach in [5] 

achieves bandwidth efficiency by convolving a rectangular pulse with a sinusoidal 

frequency shift keying pulse, a variant of a minimum shift keying pulse (half-sine pulse); 

consequently reaping the good attributes of narrow main lobe and low power sidelobes of 

the rectangular pulse and sinusoidal frequency shift keying pulse respectively. [6] 

considers pulses of optimum bandwidth efficiency, but does not consider spectral roll-off. 
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Accordingly, this thesis, which closely follows the development in [7], seeks to 

devise a methodological approach for designing pulse shapes that are of finite time 

duration, exhibit zero intersymbol interference, and are optimally bandwidth efficient in 

terms of first null bandwidth, fractional power bandwidth, and spectral roll-off while 

maintaining optimum bit error ratio performance when received via an AWGN channel. 

The next chapter (Chapter III) details the design considerations in the 

development of the new pulses. 
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III. DEVELOPMENT OF NEW PULSES 

The development of this chapter follows closely the development in [7]. 

A. PULSE DURATION 

From the scaling property of the Fourier transform, it can be seen that the time 

domain occupancy of a signal is inversely proportional to the frequency domain 

occupancy of the signal [8]. From Equation (3.1), we see that scaling down the time 

domain occupancy of the signal ( )x t  by a factor a , corresponds to scaling up the 

frequency domain occupancy of the signal by the same factor, and vice versa, where 

0a ≠ . 

 ( ) 1 fx at X
a a

⎛ ⎞↔ ⎜ ⎟
⎝ ⎠

. (3.1) 

Henceforth, to achieve a spectrally efficient complex envelope pulse, the time duration of 

the pulse should be long. However, to be realizable, the pulse duration must be finite. For 

the development of this new pulse shape, we set the duration of the pulse to be gT , where 

g  is chosen, for convenience, to be a positive integer and T , as defined earlier in 

Chapter II, is the time interval between the start of successive modulated symbols.  

 The finite duration pulse shape ( )p t  can be expressed as  

 ( ) ( ) rect tp t p t
gT

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
%  (3.2) 

where rect t
gT

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is 1 when [ ]/ 2, / 2t gT gT∈ − and 0 otherwise and ( )p t%  can be 

expressed using the complex Fourier series for a periodic signal with period gT , 

 ( ) 2expk
k

j ktp t c
gT
π∞

=−∞

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑%  (3.3) 

where the kc ’s are the complex Fourier series coefficients of ( )p t% . The Fourier 

transform of ( )p t%  is  
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( ) ( )

2exp

2exp

k
k

k
k

P f p t

j ktc
gT

j ktc
gT

π

π

∞

=−∞

∞

=−∞

= ℑ⎡ ⎤⎣ ⎦

⎡ ⎤⎛ ⎞
= ℑ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
= ℑ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

∑

∑

% %

  

 k
k

kc f
gT

δ
∞

=−∞

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ . (3.4) 

Thus, with ( )P f%  being composed of impulses at integer multiples of the fundamental 

frequency 1/ gT  (see Figure 2), we can limit the higher harmonics of the pulse to zero to 

achieve a spectrally efficient pulse shape, i.e. 0kc =  for all [ ]max max,k k k∉ − . Note that 

the Fourier series coefficients kc  are complex and are not, in general real or have the 

same magnitude; they are shown that way in Figure 2 just for illustration purposes. 

Hence, we obtain 

 ( )
max

max

2exp
k

k
k k

j ktp t c
gT
π

=−

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑% . (3.5) 

 

Figure 2 Fourier Transform of ( )P f% . 

 

0  1
gT

 2
gT

 1
gT

−  2
gT

−  

• • •• • •

maxk
gT

 

( )
max

max

k

k
k k

kP f c f
gT

δ
=−

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑%  

1c  0c  2c  
maxkc  

1c−  2c−  
maxkc−  

maxk
gT

−  
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Therefore, the Fourier transform of ( )p t  is  

( ) ( )

( )

( )
max

max

rect

rect

sinc
k

k
k k

tP f p t
gT

tP f
gT

kc f gT gTf
gT=−

⎡ ⎤⎛ ⎞
= ℑ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞

= ∗ℑ⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

⎛ ⎞
= − ∗⎜ ⎟

⎝ ⎠
∑

%

%

δ

 

                                               ( )
max

max

sinc
k

k
k k

gT c gTf k
=−

= −∑ . (3.6) 

From the above equation, the first null occurs at ( )max 1 /f k gT= + . Thus to achieve 

optimal spectral efficiency of the main lobe null-to-null bandwidth, maxk  should be kept 

small. However, as we will see later, there are two opposing considerations to the value 

of maxk ; a small maxk  will keep the width of the main lobe bandwidth small whereas a 

high maxk  will yield a steep roll off of the out-of-band power spectral density.  

B. ZERO INTERSYMBOL INTERFERENCE 

For optimum BER performance, the impulse response of the matched filter for 

( )p t  for an optimum digital communications receiver of a complex envelope signal ( )x t  

as defined in Equation (2.1) in an AWGN channel is  

 ( )
2

gTh t p t∗ ⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (3.7) 

where ( )∗  denotes the complex conjugate operation. 
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Figure 3 Matched filter receiver. 

The deterministic component of the received signal at the output of the optimum receiver 

is  

                                             ( ) ( ) ( )y t x t h t= ∗   

 ( ) ( )x h t dα α α
∞

−∞
= −∫ . (3.8) 

Consequently, the noiseless decision statistic for data [ ]D l  of such an optimum receiver 

is 

                                
2l
gZ y l T⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

  

 ( )
2
gx h l T d

∞

−∞

⎛ ⎞⎛ ⎞= + −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫ α α α . (3.9) 

Substituting Equations (2.1) and (3.7) into (3.9) we obtain, 

 

( )

( ) ( )

[ ] ( ) ( )

2 2l

n

gT gZ x p l T d

x p lT d

D n p nT p lT d

∞ ∗

−∞

∞ ∗

−∞

∞∞ ∗

−∞
=−∞

⎛ ⎞⎡ ⎤⎛ ⎞= − + −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

= −

= − −

∫

∫

∑∫

α α α

α α α

α α α

  

      [ ] ( ) ( )
n

D n p nT p lT dα α α
∞ ∞ ∗

−∞
=−∞

= − −∑ ∫ . (3.10) 

Sample at 

2
gt l T⎛ ⎞= +⎜ ⎟

⎝ ⎠
 

lZ  
Received 
signal ( )x t  ( )y t  Matched 

filter ( )h t  
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Letting u nTα= − , lZ  reduces to 

 [ ] ( ) ( )( )l
n

Z D n p u p u n l T du
∞ ∞ ∗

−∞
=−∞

= + −∑ ∫ . (3.11) 

Thus for the noiseless decision statistic lZ  to be equal to the data [ ]D l  at 
2
gl T⎛ ⎞+⎜ ⎟

⎝ ⎠
 

sampling instances, we require 

 ( ) ( )( ) 0,n lp u p u n l T du δ
∞ ∗

−−∞
+ − =∫  (3.12) 

where δ  is the Kronecker delta. As a result, we obtain,  

 [ ] [ ]0,l n l
n

Z D n D lδ
∞

−
=−∞

= =∑ . (3.13) 

Henceforth from the above, we see that in order to satisfy the zero ISI condition and an 

arbitrary condition of unit pulse energy we can mandate the following orthonormality 

requirement on the pulse shape,  

 ( ) ( ) 0,np t p t nT dt δ
∞ ∗

−∞
+ =∫ . (3.14) 

From [1] we know that the linear modulation schemes’ performance measures of symbol 

error and bit error are dependent on the energy of the pulse and are independent of the 

shape of the pulse. Therefore we set the arbitrary condition of unit pulse energy for 

convenience as we want to compare pulses with identical energy that yield the same 

symbol error and bit error performances.  

Equation (3.2) implies that ( ) ( ) 0p t p t nT∗ + =  for all t whenever n g≥ . 

Additionally, Equation (3.14) for n−  is redundant with Equation (3.14) for n . Therefore, 

the constraints of interest from (3.14) correspond to values of 0, 1, 2, ,  1n g= −K . A 

complex constraint can be written as two real constraints, i.e. its real and imaginary 

components respectively. Retrospectively, a real constraint is equivalent to one half of a 

complex constraint. For 0n = , Equation (3.14) yields one real constraint on the 

coefficients kc , and for each 1, 2, ,  1n g= −K , Equation (3.14) yields 2 real constraints 

on the coefficients kc . Thus, Equation  (3.14) yields a total of 2( 1) 1 2 1g g− + = −  real 

constraints on the coefficients kc . Equivalently, following the preceding argument, in 

terms of number of complex constraints, we also can say that Equation (3.14) yields an 
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effective 1g −  distinct complex constraints and one half a complex constraint (one real 

constraint) on the coefficients kc . The general expression for these constraints is derived 

as follows 

( ) ( ) ( ) ( )

( ) ( )

( )max max

max max

2

2

2

2

22exp exp

gT nT

gT

gT k knT

gT k l
k k l k

t t nTp t p t nT dt p t rect p t nT rect dt
gT gT

p t p t nT dt

j l t nTj ktc c dt
gT gT

ππ

∞ ∞∗ ∗

−∞ −∞

− ∗

−

− ∗

− =− =−

⎛ ⎞ ⎛ ⎞+
+ = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= +

− +⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

∫ ∫

∫

∑ ∑∫

% %

% %   

                    ( )max max

max max

2

2

22exp exp
gTk k nT

gTk l
k k l k

j t k lj nlc c dt
g gT

ππ −∗

−=− =−

−⎛ ⎞⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∫ . (3.15) 

 

As an initial step to evaluate the double summation in Equation (3.15), we first consider 

the case when k l= . The contribution to the double sum in Equation (3.15) from terms 

where k l=  is 

                     ( )
max

max

2 2exp
k

k
k k

j kng n T c
g
π

=−

⎛ ⎞−
= − ⎜ ⎟

⎝ ⎠
∑ . (3.16) 

Next, we consider the remaining terms. The contribution to the double sum in Equation 

(3.15) from terms where k l≠  is 
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( )
( )

( )( ) ( ) ( )( )

( )

max max

max max

max max

max max

2exp exp
2

2
                        exp exp exp

2exp exp
2

k k

k l
k k l k

k k

k l
k k l k

j n k lj nl gTc c
g j k l g

j n k l
j k l j k l

g

j nj nl gTc c
g j k l

ππ
π

π
π π

ππ
π

∗

=− =−

∗

=− =−

− −⎛ ⎞⎛ ⎞−
⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠

⎡ ⎤− −⎛ ⎞
× − − − −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

−⎛ ⎞−
= ⎜ ⎟ −⎝ ⎠

∑ ∑

∑ ∑ ( )

( )( ) ( ) ( )( ) ( )

( )
( )

( )

max max

max max

                        exp exp exp exp

2exp exp

                        sin

k k

k l
k k l k

k l
g

j n k l j n k l
j k l j k l

g g

j n k lj nl gTc c
g k l g

n k
k l

π π
π π

ππ
π

π
π

∗

=− =−

−⎛ ⎞
⎜ ⎟
⎝ ⎠

⎡ ⎤− − −⎛ ⎞ ⎛ ⎞
× − − − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

− −⎛ ⎞⎛ ⎞−
= ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠

−
× − −

∑ ∑

( )

( )

( )

( )

( )

max max

max max

max max

max max

2exp 1 exp

sin 1
                        

1

2exp exp

k k

k l
k k l k

k k

k l
k k l k

l
g

j n k lj nl nc c gT
g g g

nk l
g

nk l
g

jj nlc c g n T
g

ππ

π

π

π

∗

=− =−

∗

=− =−

⎛ ⎞
⎜ ⎟
⎝ ⎠

− −⎛ ⎞⎛ ⎞ ⎛ ⎞−
= − ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞
− −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠×
⎛ ⎞

− −⎜ ⎟
⎝ ⎠

−⎛ ⎞−
= −⎜ ⎟

⎝ ⎠

∑ ∑

∑ ∑ ( )

( )                        sinc 1

n k l
g

nk l
g

π −⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞
× − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

 ( )( ) ( ) ( )( ) ( )exp exp exp exp
j n k l j n k l

j k l j k l
g g

π π
π π

⎡ ⎤− − −⎛ ⎞ ⎛ ⎞
× − − − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
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( ) ( ) ( )
max max

max max

exp sinc 1
k k

k l
k k l k

j n k l ng n T c c k l
g g

π∗

=− =−

⎛ ⎞− +⎛ ⎞ ⎛ ⎞
= − × − −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
∑ ∑ . (3.17) 

It is interesting to note that Equation (3.17) resolves to Equation (3.16) when setting 

k l= . Consequently, combining the preceding two cases and with Equation (3.14) we 

obtain 

 ( ) ( ) ( )
max max

max max

0,exp sinc 1
k k

k l n
k k l k

j n k l ng n T c c k l
g g

π
δ∗

=− =−

⎛ ⎞− +⎛ ⎞ ⎛ ⎞
− × − − =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
∑ ∑  (3.18) 

for 0, 1, 2, ,  1n g= −K . 

Specifically, the real constraint under unit energy condition in Equation (3.18) is 

obtained by setting 0n =  which yields 

 
max

max

2 1
k

k
k k

gT c
=−

=∑ . (3.19) 

C. SPECTRAL ROLL-OFF 

We seek to design pulses that have steep spectral roll-off. From [8], the number of 

continuous derivatives that a function ( )a t  possesses determines the compactness of its 

corresponding Fourier transform ( )A f , or more specifically the roll-off as f  increases. 

As an illustration, consider the frequency domain functions ( )2sinc f  and ( )sinc f . The 

fact that the function ( )2sinc f  is more compressed in its spectral occupancy and has 

higher spectral roll-off compared to the function ( )sinc f  can be attributed to their 

corresponding inverse Fourier transform functions. From Figure 4, we see that the 

function ( ) ( )sincrect t f↔  has an impulsive 1st derivative in time which corresponds to 

a spectral roll-off of 1f − , or -10 decibels per decade. In contrast, the function 

( )2( ) sinctri t f↔  has an impulsive 2nd derivative in time with corresponding steeper 

spectral roll-off of 2f − , or -20 decibels per decade. Thus, specifically, if a function ( )a t  

is CN (i.e. its thN derivative is continuous), implying its ( )1 thN +  derivative is non-
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continuous and its ( )2 thN +  is impulsive, then the sidelobes of ( )A f  diminish at least 

as rapidly as ( )21/ Nf + , or equivalently  

 ( ) ( )10 1020 log 20 2 logA f K N f≤ − +  (3.20) 

where K  is an immaterial arbitrary constant in this context. 
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Figure 4 Comparison of spectral roll-off of ( )sinc f & ( )2sinc f . 
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Therefore, if our pulse shape ( )p t  is CN , then Equations (2.4) and (3.20) tell us that the 

power spectral density of our communications signal in Equation (2.1) drops off at least 

( )20 2N +  decibels per decade of frequency. Hence, we desire pulses that are continuous 

in time and have as many continuous temporal derivatives as possible.  

 Therefore, we require  

 ( ) { }0 for 0,1,...,
2

n gTp n N⎛ ⎞± = ∈⎜ ⎟
⎝ ⎠

. (3.21) 

Since ( )p t%  has period of gT , (3.21) yields exactly 1N +  distinct complex constraints on 

the coefficients kc . The general expression for these constraints is derived as follows:  

 Recall Equation (3.5), ( )
max

max

2exp
k

k
k k

j ktp t c
gT
π

=−

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑% . 

Hence, by induction,  

 ( ) ( )
max

max

2 2exp
nk

n
k

k k

j k j ktp t c
gT gT
π π

=−

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑% . (3.22) 

From (3.21),  

 

( ) ( )

( ) ( )
max

max

2 2

2 exp

n n

n k
n

k
k k

gT gTp p

j k c jk
gT
π π

=−

⎛ ⎞ ⎛ ⎞± = ±⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
= ±⎜ ⎟
⎝ ⎠

∑

%

  

                  ( ) ( )
max

max

2 1 0
n k

n k
k

k k

j k c
gT
π

=−

⎛ ⎞
= − =⎜ ⎟
⎝ ⎠

∑ . (3.23) 

Thus obtaining,  

 ( ) ( ) { }
max

max

1 0 for 0,1,...,
k

n k
k

k k
k c n N

=−

− = ∈∑ . (3.24) 

Equation (3.24) yields exactly 1N +  distinct complex constraints on the coefficients kc . 

Therefore, the constraints in Equations (3.18) and (3.24) constitute g N+  distinct 

complex equations and one real equation.  
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From the linearity Fourier transform pair, a phase rotation in the time domain of 

the pulse is equivalent to the same phase rotation of the pulse in frequency domain,  

 ( ) ( )exp ( ) exp ( )j p t j P fφ φ↔ . (3.25) 

This implies that regardless of φ , rotation of our pulse by an arbitrary phase has no effect 

on the power spectral density (see Equation (2.4)). Thus, we can then arbitrarily insist 

that 0c  be purely real, i.e., 

 ( )0Im 0c = . (3.26) 

This gives one half of a complex constraint, and when combined with the constraints in 

Equations (3.18) and (3.24) yields an effective total of 1g N+ +  complex constraints. 

Equation (3.5) indicates that there are max2 1k +  complex unknowns kc . Therefore, if we 

choose a value for maxk , then we can set  

 max2N k g= −  (3.27) 

to have equal numbers of constraints and unknowns. Then Equations (3.18), (3.24), and 

(3.26) can be solved simultaneously for the kc  coefficients, thereby determining our 

pulse shape via Equation (3.2). 

 The value of maxk  should be chosen to achieve the desired tradeoff between first 

null bandwidth and spectral roll-off. Specifically, the first null of the complex lowpass 

equivalent signal in Equation (2.1) occurs at 

 max
1

1kf
gT
+

=  (3.28) 

and the spectral roll-off is at least 

 ( )max20 2 2  decibels per decade of frequencyk g− + . (3.29) 

Therefore, small maxk  improves the first null bandwidth while large maxk  enhances 

spectral roll-off. If we insist that our pulse, ( )p t , be continuous, then 0N ≥ . In this case 

maxk  may be chosen as small as / 2g  which corresponds to the minimum first null 

( )( )1 0.5 1/ 1/f g T= + . Clearly, the limit of the first null bandwidth is ( )1/ 2T  for very 

long duration pulses (i.e. large g ). It is intuitively pleasing that this corresponds to the 
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first null bandwidth of the minimum bandwidth infinite duration pulse shape 

( ) ( )sinc /p t t T= , ( ( ) ( )rectP f T fT↔ = ). On the other hand, if we demand that our 

first null bandwidth be no greater than 1 T , then, by Equation (3.28) we must insist that 

max 1k g≤ − . Typically, we will require  

 max2 1g k g≤ ≤ −  (3.30) 

for good spectral roll off and first null bandwidth.  

The above illustrations show a methodology to design fixed time duration pulses 

that exhibit zero intersymbol interference and steep spectral roll-off. The value of maxk  is 

chosen to achieved the desired tradeoff between the null to null bandwidth and spectral 

roll off.  

The next chapter (Chapter IV) presents the spectral efficiency, intersymbol 

interference, and sensitivity to jitter performances of the new pulses with varied g  and 

maxk  values. Equations (3.18), (3.24), and (3.26) are solved simultaneously for the kc  

coefficients, thereby determining our new pulse shapes via Equation (3.2). 
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IV. ANALYSIS OF THE PROPOSED NEW PULSES 

Adopting design considerations from Chapter III in the development of the new 

spectrally efficient pulse shapes, the designer should first determine the largest practical 

pulse duration, gT  for the required communication system application. The larger this 

can be, the more potential there is for spectral efficiency, although there is a diminishing 

return as pulse duration increases.  Also, the numerical computations required to solve for 

the coefficients kc  grows rapidly with increasing pulse duration.  Next, the designer will 

choose maxk  according to the desired tradeoff between the first null bandwidth and the 

spectral roll-off. A small maxk  achieves a narrower null-to-null bandwidth whilst a large 

maxk  achieves a steeper spectral roll-off. Then, the designer will solve for the coefficients 

kc  that satisfy the Equations (3.18), (3.24), and (3.26). In view of the fact that Equation 

(3.18) is quadratic, solving the coefficients kc  analytically is complicated except for the 

case of normalized duration 1g = . For cases of 1g > , numerical methods and tolerated 

approximate solutions via MATHCAD®’s Find Solve Block (and MATLAB®’s fsolve) 

are used to solve for the coefficients kc . The following outlay of this chapter exemplifies 

the results achieved for varied variables g  and maxk . Additionally, the corresponding 

results for the root-raised cosine pulse truncated to the same duration gT  are 

superimposed on the graphs for performance comparison purposes. For convenience, we 

let 1T =  in the numerical calculations. 

A. PULSE DURATION=T , max 1k =  

This is the only example in this thesis for which the solution is exact and 

analytically obtained as follows:  

Substituting 1g =  into Equation (3.19) obtains,  

 
1

2

1
1k

k
c

=−

=∑ . (4.1) 
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Then expanding Equation (4.1) yields 

 ( )2 2 2
1 0 1 1c c c− + + = . (4.2) 

From Equation (3.27), with 1g =  and max 1k = , we obtained the number of continuous 

temporal derivatives as 1N = . Therefore, Equation (3.24) with { }0,1n∈  yields 

 ( ) ( )
1

0

1
1 0k

k
k

k c
=−

− =∑  (4.3) 

which is simplified to  

 1 0 1 0c c c−− + − =  (4.4) 

for continuity of the pulse itself and 

 

 ( ) ( )
1

1

1
1 0k

k
k

k c
=−

− =∑  (4.5) 

which is simplified to 
 1 1 0c c− − =  (4.6) 

for continuity of the first derivative. Henceforth, solving Equations (3.26), (4.2), (4.4), 

and (4.6) simultaneously yields the coefficients kc  as shown in Table 1 below. 

 

Table 1 Coefficients kc  for new pulse of duration T  with max 1k = . 

1c−  1/ 6  

0c  2 / 6  

1c  1/ 6  
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Substituting this result into Equations (3.2) and (3.6) yields ( )p t  and ( ) 2
P f , which are 

as shown in Figure 5. The root-raised cosine pulse truncated to the same duration T  in 

Equations (2.7) and (2.8) yields ( )'RCp t  and ( ) 2
'RCP f  which are superimposed on the 

graph for performance comparison. Note in this case, the first null bandwidth of the 

truncated root-raised cosine is smaller than the first null bandwidth of the new pulse. 

However, the spectral roll-off of the new pulse is much better than that of the truncated 

root-raised cosine pulse. This example is for illustrative purposes only, as the short 

duration of the pulse greatly limits its spectral efficiency.  
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Figure 5 Comparison of duration T , new (with max 1k = ) and truncated root raised 
cosine (with 0.3α = ) pulse shapes.  
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B. PULSE DURATION 5T= , max 5k =  

In this section we design a longer duration pulse with the hopes of increased 

spectral efficiency, choosing 5g =  as a compromise between spectral efficiency and 

computational complexity. max 5k =  is a large value and is chosen to illustrate sharp 

spectral roll off.   

The simultaneous solution of Equations (3.18), (3.24), and (3.26) yields the 

coefficients kc  as shown in Table 2 below, 

 

Table 2 Coefficients kc  for new pulse of duration 5T  with max 5k = . 

5c−  3 33.6372 10 7.9971 10j− −× + ×  

4c−  0.0268 0.0408j+  

3c−  0.0851 0.0829j+  

2c−  0.1555 0.0822j+  

1c−  0.1937 0.0361j+  

0c  0.1997  

1c  30.1939 1.9040 10j −+ ×  

2c  0.1595 0.0216j+  

3c  0.0908 0.0286j+  

4c  0.0300 0.0164j+  

5c  3 34.2697 10 3.5962 10j− −× + ×  
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Substituting this result into Equations (3.2) and (3.6) yields ( )p t  and ( ) 2
P f , which are 

as shown in Figure 6. The root-raised cosine pulse truncated to the same duration 5T  in 

Equations (2.7) and (2.8) yields ( )'RCp t  and ( ) 2
'RCP f  which are superimposed on the 

graph for performance comparison. In this case we see that by increasing the duration of 

the new pulse from the previous example of T  to 5T  we achieve a smaller first null 

bandwidth. The first null bandwidth is 1.2 /T  as predicted by Equation (3.28) and the 

spectral roll-off is -140 dB/decade as predicted by Equation (3.29). This first null 

bandwidth of the new pulse is larger than the first null bandwidth of the truncated root-

raised cosine. However, the spectral roll-off of this new pulse is substantially better than 

that of the truncated root-raised cosine pulse. 
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Figure 6 Comparison of duration 5T , new (with max 5k = ) and truncated root raised 
cosine (with 0.3α = ) pulse shapes. 
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C. PULSE DURATION 5T= , max 4k =  

In this section we design a pulse equal in duration to the prior pulse with a 

reduction in maxk  of one, to illustrate how this improves first null bandwidth at the 

expense of decreased spectral roll off. 

The simultaneous solution of Equations (3.18), (3.24), and (3.26) yields the 

coefficients kc  as shown in Table 3 below, 

 

Table 3 Coefficients kc  for new pulse of duration 5T  with max 4k = . 

4c−  0.0180 0.0181j− +  

3c−  0.0981 0.0191j− +  

2c−  0.1382 0.1044j− −  

1c−  0.0419 0.1939j−  

0c  0.2000    

1c  0.0419 0.1939j+  

2c  0.1382 0.1044j− +  

3c  0.0981 0.0191j− −  

4c  0.0180 0.0181j− −  
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Substituting this result into Equations (3.2) and (3.6) yields ( )p t  and ( ) 2
P f , which are 

as shown in Figure 7. The root-raised cosine pulse truncated to the same duration 5T  in 

Equations (2.7) and (2.8) yields ( )'RCp t  and ( ) 2
'RCP f  which are superimposed on the 

graph for performance comparison. Note, in this case that the first null bandwidth is 1/T  

as predicted by Equation (3.28) and the spectral roll-off is -100 dB/decade as predicted 

by Equation (3.29). In contrast to the pulse in Figure 6, this is a good example illustrating 

that by reducing maxk  from 5 to 4, we are sacrificing spectral roll-off for improved first 

null bandwidth performance. This first null bandwidth of the new pulse is still larger than 

the first null bandwidth of the truncated root-raised cosine. However, the spectral roll-off 

of this new pulse is still substantially better than that of the truncated root-raised cosine 

pulse even with the trade off between spectral roll-off for improved first null bandwidth 

performance. This example demonstrates that for equal duration new pulses, we can 

control the maxk  to yield the required first null bandwidth and spectral roll-off. 

Additionally we see that by setting max 1k g≤ −  we can achieve first null bandwidth less 

than or equal to1/T .   
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Figure 7 Comparison of duration 5T , new (with max 4k = ) and truncated root raised 
cosine (with 0.3α = ) pulse shapes. 
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D. PULSE DURATION 8T= , max 5k =  

In this section we design an even longer duration pulse with the hopes of 

increased spectral efficiency, choosing 8g =  as the design with greatest computational 

complexity attempted as part of this work. Our guidance in Equation (3.30) suggests 

constraining maxk  such that max4 7k≤ ≤ , so we choose a value from the middle of the 

range as a value that should yield both good spectral roll off and good first null 

bandwidth. 

The simultaneous solution of Equations (3.18), (3.24), and (3.26) yields the 

coefficients kc  as shown in Table 4 below, 

 

Table 4 Coefficients kc  for new pulse of duration 8T  with max 5k = . 

5c−  0.0212 0.0018j−  

4c−  0.0724 0.0339j+  

3c−  0.0259 0.1175j+  

2c−  0.1162 0.0460j− +  

1c−  0.0303 0.1213j− −  

0c  0.1250  

1c  0.0336 0.1204j− +  

2c  0.1100 0.0593j− −  

3c  0.0625 0.1062j−  

4c  0.0949 0.0150j+  

5c  0.0204 0.0269j+  
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Substituting this result into Equations (3.2) and (3.6) yields ( )p t and ( ) 2
P f , which are 

as shown in Figure 8. The root-raised cosine pulse truncated to the same duration 8T  in 

Equations (2.7) and (2.8) yields ( )'RCp t  and ( ) 2
'RCP f  which are superimposed on the 

graph for performance comparison. Note, in this case that the first null bandwidth is 

0.75 /T  as predicted by Equation (3.28) and the spectral roll-off is -80 dB/decade as 

predicted by Equation (3.29). This first null bandwidth of the new pulse is larger than the 

first null bandwidth of the truncated root-raised cosine. However, the spectral roll-off of 

this new pulse is substantially better than that of the truncated root-raised cosine pulse. 

This is a good example of fairly even balance in the first null bandwidth versus spectral 

roll-off tradeoff.  
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Figure 8 Comparison of duration 8T , new (with max 5k = ) and truncated root raised 

cosine (with 0.3α = ) pulse shapes. 
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E. PULSE DURATION 8T= , max 4k =  

In this section we design a pulse equal in duration to the prior pulse, but this time 

we use the minimum maxk  consistent with our guidance in Equation (3.30) to illustrate 

improved first null bandwidth at the expense of decreased spectral roll off. 

The simultaneous solution of Equations (3.18), (3.24), and (3.26) yields the 

coefficients kc  as shown in Table 5 below, 

 

Table 5 Coefficients kc  for new pulse of duration 8T with max 4k = . 

4c−  0.0864 0.0187j+  

3c−  0.1218 - 0.0280j  

2c−  0.1104 - 0.0587j  

1c−  0.1236 - 0.0188j  

0c  0.1250  

1c  0.1210 - 0.0313j  

2c  0.1126 - 0.0542j  

3c  0.0685 - 0.1045j  

4c  -45.5627 10 - 0.0884j×  
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Substituting this result into Equations (3.2) and (3.6) yields ( )p t  and ( ) 2
P f , which are 

as shown in Figure 9. Note, in this case that the first null bandwidth is 0.625 /T as 

predicted by Equation (3.28) and the spectral roll-off is -40 dB/decade as predicted by 

Equation (3.29). In contrast to the pulse in Figure 8, this example illustrates that by 

sacrificing the spectral roll-off of this pulse to itself being continuous, implying its 

second derivative is impulsive, the pulse has smaller first null bandwidth compared to the 

truncated root-raised cosine pulse. The spectral roll-off of the new pulse also outperforms 

the truncated root raised cosine, from frequency of 3 /T  onwards. Thus this new pulse is 

more spectrally efficient that the truncated root raised cosine pulse in both measures of 

spectral efficiency employed here, namely first null bandwidth and spectral roll-off. 
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Figure 9 Comparison of duration 8T , new (with max 4k = ) and truncated root raised 
cosine (with 0.3α = ) pulse shapes. 
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F. PULSE INTERSYMBOL INTERFERENCE PERFORMANCE  

Intersymbol interference (ISI) and sensitivity to jitter are analyzed heuristically by 

examining the eye diagram, which is essentially a plot of the matched filter output as a 

function of time for all possible data sequences superimposed upon one another. 

Specifically, the superposition of every snapshot of a 2T  interval of the matched filter 

output using Equation (2.9) with binary antipodal modulation (i.e. [ ] 1D n = ± ) yields the 

eye diagram. The eye diagram provides visible evidence of compliance or non 

compliance with the first Nyquist criterion (see Equation (2.10)). A compliant waveform 

will exactly take on the values of 1±  at the vertical axis when time t  is an integer 

multiple of T , indicating zero ISI. This compliant waveform is called a Nyquist pulse. 

The ( ) sinc( / )p t t T=  pulse has ideal spectral properties, but is not used, even in 

truncated form, in practical systems due its sensitivity to jitter.  The well-known root 

raised cosine pulse with raised cosine waveform at the output of the matched filter is 

compared against the new pulses at their matched filter outputs for relative comparisons 

of sensitivity to ISI and jitter. The below table shows the parameters of the new pulses 

that are used in this section. Note that xT  implies the transpose of x . 



                                                                 
                                                                                                            

38 

 

Table 6 New pulses’ coefficients kc  for ISI analysis. 

New pulse with duration 2T  and max 2k =  

( )2 1 2

0.0791 0.0791
0.3162 0.1581

, , 0.4743
0.3162 - 0.1581
0.0791- 0.0791

Tj
j

c c c
j
j

− −

+⎛ ⎞
⎜ ⎟+⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

K  

New pulse with duration 3T  and max 3k =  

( )3 2 3

0.0371- 0.0144   
0.1538 - 0.0578
0.2809 - 0.0722

, , 0.3285
0.2809 0.0722
0.1538 0.0578
0.0371 0.0144

Tj
j
j

c c c
j
j
j

− −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟+
⎜ ⎟

+⎜ ⎟
⎜ ⎟+⎝ ⎠

K  

New pulse with duration 4T  and max 4k =  

( )

4

4 3 4

4

8.7515 10 - 0.0157
0.0163- 0.0785
0.0807 - 0.157
0.1897 - 0.1416

, , 0.2490
0.1896 0.1418
0.0804 0.1575
0.0160 0.0787
7.8554 10 0.0157

T
j

j
j
j

c c c
j
j
j

j

−

− −

−

⎛ ⎞×
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟

+⎜ ⎟
⎜ ⎟+⎜ ⎟
⎜ ⎟+
⎜ ⎟⎜ ⎟× +⎝ ⎠

K

New pulse with duration 5T and max 5k =  See Section B of this chapter for the 

coefficients kc  of this pulse 

 

From Equation (2.9), the waveforms generated using the new pulse with duration 

5T  and max 5k =  (see Table 6 for the respective coefficients kc ), and the root raised 

cosine truncated to the same duration at the respective receivers’ matched filters’ outputs 
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are as shown in Figure 10. In this time domain plot, we see that the raised cosine 

waveform at the matched filter output has higher and longer tails as compared to the new 

Nyquist waveform at the matched filter output. Additionally, the raised cosine waveform 

shows significant zero crossing errors at the integer multiples of T . This is due to the 

truncation of the root raised cosine pulse. Consequently, these results indicate that the 

new pulse should outperform the root raised cosine pulse in terms of insensitivity to ISI 

and jitter, as is illustrated in their respective eye diagrams.   
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Figure 10 Comparison of matched filter outputs for systems using duration 5T , new 
(with max 5k = ) and truncated root raised cosine (with 0.3α = ) pulses. 

 

Figure 11 and Figure 12 show the respective eye diagrams of these waveforms. 

The vertical opening of the eye measures the lack of ISI whereas the horizontal opening 

of the eye measures the insensitivity to jitter. In Figure 11, we see that the new pulse 

achieves zero ISI as its normalized eye pattern takes on the values of exactly 1±  at the 

vertical axis when time t  is an integer multiple of T . In contrast, as predicted, the 

truncated root raised cosine has ISI (i.e. not a value of 1±  at the vertical axis) when t  is 
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an integer multiple of T . Additionally, the root raised cosine has smaller horizontal eye 

pattern opening compared to the new pulse as a result of its higher amplitude and longer 

tails.  
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Figure 11 Eye diagram of waveform at matched filter output for system using the new 
pulse with duration 5T . 
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Figure 12 Eye diagram of waveform at the matched filter output for system using 
truncated root raised cosine pulse.. 

 

From the perspective of analyzing the new pulses with increasing pulse duration, 

the new pulses of duration 2T  with max 2k = , duration 3T  with max 3k = , duration 4T  

with max 4k = , and duration 5T  with max 3k =  (see Table 6 for the respective coefficients 

kc ) are used in this analysis. As can be seen in Figure 13, the tails of the waveforms at 

the output of matched filter increase as pulse duration increases while maintaining the 

zero crossing when time t  is an integer multiple of T . These increasing tails should have 

minimal impact in terms of sensitivity to jitter performance since as shown in the eye 

diagrams of the respective pulse duration (see Figure 11, Figure 14, Figure 15, and Figure 

16) the horizontal openings are still within 0.3T± . The susceptibility to jitter of this new 

pulse should be low. Additionally, based on the eye diagrams, the pulses have good noise 

margin and is unlikely to cause decision errors without excessive noise. 
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Figure 13 Comparison of waveforms at the matched filter output for systems using the 
new pulses with varied pulse durations. 
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Figure 14 Eye diagram of waveform at the matched filter output for system using the 
new pulse with duration 2T . 
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Figure 15 Eye diagram of waveform at the matched filter output for system using the 
new pulse with duration 3T . 
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Figure 16 Eye diagram of waveform at the matched filter output for system using the 
new pulse with duration 4T .  
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From the above illustrations in this chapter, there are indeed many permutations 

and combinations of g  and maxk  available to devise an appropriate pulse for a required 

digital communications system. As the duration of the pulse, gT , is increased, the 

possibilities for increased spectral efficiency improved further. For example, for 20g = , 

using our guidance in Equation (3.30) maxk  can be as small as 10, corresponding to a first 

null bandwidth of 0.55 /T  and a spectral roll-off of -40 dB/decade or maxk  can be as large 

as 19, yielding a first null bandwidth of 1/T  and a spectral roll-off of -400 dB/decade. A 

representative compromise value of max 14k =  yields a first null bandwidth of 0.75 /T  

and a spectral roll-off of -200 dB/decade. The eye diagrams revealed that the pulses 

exhibit zero intersymbol interference and favorable robustness to jitter.  

The next chapter (Chapter V) demonstrates the bandwidth efficiency of the new 

pulses with respect to its fractional power bandwidth. 
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V. FRACTIONAL POWER BANDWIDTH 

Fractional power bandwidth is a measure of the bandwidth that contains a 

specified percentage of the overall power of a signal. Specifically, a 0.99 power 

bandwidth implies 99% of the signal power is contained in the 99% power bandwidth w , 

leaving 0.5% power at both the upper and lower limit outside this bandwidth. This 0.99 

power bandwidth criterion is adopted by the Federal Communications Commission 

(FCC) as a yardstick for signal power bandwidth control. This chapter seeks to 

investigate the fractional power bandwidth containment possible by designing new pulses 

at different g  and maxk  values based on the required digital communications application 

by adding an additional power bandwidth consideration to the pulse development 

illustrated in Chapter III. This new constraint does not optimize the power bandwidth; it 

calculates the power bandwidth w  for the new pulse that satisfies all the applied design 

constraints.  

Using the arbitrary condition of unit pulse energy of the shift orthonormality 

requirement on the new pulse shapes (when 0n = ) from Equation (3.14), the following 

expressions are derived for the calculation of the fractional power bandwidth containment 

of this pulse starting with the unit energy condition 

 ( ) 2
1p t dt

∞

−∞
=∫ . (5.1) 

Using Parseval's theorem and Equation (5.1) yields  

 ( ) 2
1P f df

∞

−∞
=∫  (5.2) 

where recalling from Equation (3.6), ( ) ( )
max

max

sinc
k

k
k k

P f gT c gTf k
=−

= −∑ .  

Thus, from Equation (5.2), the power of the signal ( )x t  as defined in Equation (2.1) is 

 ( ) 21 1P f df
T T

∞

−∞
=∫  (5.3) 

where the data process, [ ]D n , is assumed to have unit variance.   
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Therefore, the fractional power Y  of this pulse at bandwidth w  is  

                       ( ) 21 w

w

YP f df
T T−

=∫   

 ( )
max

max

2

sinc
kw

kw
k k

gT c gTf k df Y
−

=−

− =∑∫ . (5.4) 

This fractional power bandwidth design constraint yields one real equation. Thus, with 

the constraints from Equations (3.18), (3.24), and (3.26), there are now an effective of 

1g N+ +  distinct complex equations and one real equation. To design a spectrally 

efficient pulse shape consistent with Chapter III pulse development, we again choose a 

value for maxk  to achieve the desired tradeoff between null to null bandwidth and spectral 

roll off, then set the number of continuous temporal derivatives of the pulse to 

max2N k g= − . Subsequently, Equations (3.18), (3.24), (3.26), and (5.4)can be solved 

simultaneously for the kc  coefficients and the fractional power bandwidth w  based on 

the equal numbers of constraints and unknowns, thereby determining our pulse shape via 

Equation (3.2) that fulfill the fractional power bandwidth containment requirement. 

 Below are illustrative examples of coefficients kc  and fractional power bandwidth 

w  for varied variables g  and maxk  with fractional power 0.99Y =  calculated via 

MATHCAD®’s Find Solve Block that uses Equations (3.18), (3.24), (3.26), and (5.4). 

The root-raised cosine pulses truncated to the same duration gT  are superimposed on the 

graphs for performance comparison purposes.  
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A. PULSE DURATION 5T= , max 5k = , 0.99Y =  

The simultaneous solution of Equations (3.18), (3.24), (3.26) and (5.4) yields the 

coefficients kc  and the 0.99 power bandwidth w  as shown in Table 7 below, 

 

Table 7 Coefficients kc  for new pulse of duration 5T  with max 5k =  and 0.99Y = . 

5c−  3 33.3103 10 8.5453 10j− −× + ×  

4c−  0.0254 0.0436j+  

3c−  0.0830 0.0884j+  

2c−  0.1542 0.0875j+  

1c−  0.1935 0.0385j+  

0c  0.1997  

1c  40.1935 3.3680 10j −+ ×  

2c  0.1579 0.0192j+  

3c  0.0885 0.0267j+  

4c  0.0285 0.0157j+  

5c  3 33.9247 10 3.5156 10j− −× + ×  

w  0.7642 /T  
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Substituting the coefficients kc  results into Equations (3.2) and (3.6) yields ( )p t  and 

( ) 2
P f , which are as shown in Figure 17. The root-raised cosine pulse truncated to the 

same duration 5T  in equations (2.7) and (2.8) yields ( )'RCp t  and ( ) 2
'RCP f  which are 

superimposed on the graph for performance comparison. Note, in this case that the first 

null bandwidth is 1.2 /T  as predicted by Equation (3.28) and the spectral roll-off is -140 

dB/decade as predicted by Equation (3.29). The spectral roll-off of this new pulse is 

substantially better than that of the truncated root-raised cosine pulse. The 0.99 power 

bandwidth achieved for this pulse design is 0.7642 /T . This value is approximately 16% 

larger than the 0.99 power bandwidth of the untruncated root raised cosine pulse as 

shown in Table 11. Recall that the untruncated root raised cosine pulse has infinite 

duration, and that a truncated root raised cosine pulse will not have as narrow a 

bandwidth. The infinite duration root raised cosine is used here for comparison because 

its bandwidth is a lower bound on achievable bandwidth using realizable root raised 

cosine pulses. 
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Figure 17 Comparison of duration 5T , new pulse (with max 5k = , 0.99Y = ) and 
truncated root raised cosine (with 0.3α = ) pulse shapes. 
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B. PULSE DURATION 5T= , max 4k = , 0.99Y =  

The simultaneous solution of Equations (3.18), (3.24), (3.26) and (5.4) yields the 

coefficients kc  and the 0.99 power bandwidth w  as shown in Table 8 below, 

 

Table 8 Coefficients kc  for new pulse of duration 5T  with max 4k =  and 0.99Y = . 

4c−  0.0119 - 0.0207j  

3c−  0.0588 - 0.0791j  

2c−  0.1337 - 0.1114j  

1c−  0.1882 - 0.0635j  

0c  0.2  

1c  0.1982 0.0119j+  

2c  30.1739 - 7.0730 10j −×  

3c  0.0976 - 0.0136j  

4c  30.0234 - 4.9962 10j −×  

w  0.6945 /T  
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Substituting this result into Equations (3.2) and (3.6) yields ( )p t  and ( ) 2
P f , which are 

as shown in Figure 18. The root-raised cosine pulse truncated to the same duration 5T  in 

equations (2.7) and (2.8) yields ( )'RCp t  and ( ) 2
'RCP f  which are superimposed on the 

graph for performance comparison. Note, in this case that the first null bandwidth is 1/T  

as predicted by Equation (3.28) and the spectral roll-off is -100 dB/decade as predicted 

by Equation (3.29). In contrast to the pulse in Figure 17, we are sacrificing spectral roll-

off for improved first null bandwidth performance by reducing maxk  from 5 to 4. The 

spectral roll-off of this new pulse is still substantially better than that of the truncated 

root-raised cosine pulse even with the trade off between spectral roll-off for improved 

first null bandwidth performance. The 0.99 power bandwidth achieved for this pulse 

design is 0.6945 /T . In contrast to the pulse in Figure 17, this value is now only 8% 

larger than the 0.99 power bandwidth of the untruncated root raised cosine pulse as 

shown in Table 11. This example demonstrates that for same finite duration new pulses, 

we can control the maxk  to yield the required fractional power bandwidth and spectral 

roll-off. 
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Figure 18 Comparison of duration 5T , new (with max 4k =  and 0.99Y = ) and truncated 
root raised cosine (with 0.3α = ) pulse shapes. 



                                                                 
                                                                                                            

53 

C. PULSE DURATION 8T= , max 5k = , 0.99Y =  

The simultaneous solution of Equations (3.18), (3.24), (3.26) and (5.4) yields the 

coefficients kc  and the 0.99 power bandwidth w  as shown in Table 9 below, 

 

Table 9 Coefficients kc  for new pulse of duration 8T  with max 5k =  and 0.99Y = . 

5c−  0.0203 0.0157j+  

4c−  0.0770 0.0372j+  

3c−  0.1198 0.0193j+  

2c−  0.1242 - 0.0139j  

1c−  0.1242 - 0.0140j  

0c  0.125  

1c  30.1249 - 5.7909 10j −×  

2c  0.1238 - 0.0173j  

3c  30.1220 - 8.7691 10j −×  

4c  30.0911 1.6375 10j −+ ×  

5c  30.0300 1.1427 10j −+ ×  

w  0.5842 /T  
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Substituting this result into Equations (3.2) and (3.6) yields ( )p t  and ( ) 2
P f , which are 

as shown in Figure 19. The root-raised cosine pulse truncated to the same duration 8T  in 

equations (2.7) and (2.8) yields ( )'RCp t  and ( ) 2
'RCP f  which are superimposed on the 

graph for performance comparison. Note, in this case that the first null bandwidth is 

0.75 /T  as predicted by Equation (3.28) and the spectral roll-off is -80 dB/decade as 

predicted by Equation (3.29). The spectral roll-off of this new pulse is substantially better 

than that of the truncated root-raised cosine pulse. This is a good example of fairly even 

balance in the first null bandwidth versus spectral roll-off tradeoff. The 0.99 power 

bandwidth achieved for this pulse design is 0.5842 /T . This value is approximately 9% 

better than the ideal best case 0.99 power bandwidth of the untruncated root raised cosine 

pulse as shown in Table 11. This new pulse outperforms the root raised cosine pulse in 

terms of both the 0.99 power bandwidth and the spectral roll-off.  
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Figure 19 Comparison of duration 8T , new (with max 5k =  and 0.99Y = ) and truncated 
root raised cosine (with 0.3α = ) pulse shapes. 
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D. PULSE DURATION 8T= , max 4k = , 0.99Y =  

The simultaneous solution of Equations (3.18), (3.24), (3.26) and (5.4) yields the 

coefficients kc  and the 0.99 power bandwidth w  as shown in Table 10 below, 

 

Table 10 Coefficients kc  for new pulse of duration 8T  with max 4k =  and 0.99Y = . 

4c−  0.0864 0.0187j+  

3c−  0.1218 - 0.0280j  

2c−  0.1104 - 0.0587j  

1c−  0.1236 - 0.0188j  

0c  0.1250  

1c  0.1210 - 0.0313j  

2c  0.1126 - 0.0542j  

3c  0.0685 - 0.1045j  

4c  -45.6675 10 - 0.0884j×  

w  0.5420 /T  
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Substituting this result into Equations (3.2) and (3.6) yields ( )p t  and ( ) 2
P f , which are 

as shown in Figure 20. The root-raised cosine pulse truncated to the same duration 8T  in 

equations (2.7) and (2.8) yields ( )'RCp t  and ( ) 2
'RCP f  which are superimposed on the 

graph for performance comparison. Note, in this case that the first null bandwidth is 

0.625 /T as predicted by Equation (3.28) and the spectral roll-off is -40 dB/decade as 

predicted by Equation (3.29). In contrast to the pulse in Figure 19, this example illustrates 

that by sacrificing the spectral roll-off of this pulse to itself being continuous, implying 

its second derivative is impulsive, the pulse has smaller first null bandwidth compared to 

the truncated root-raised cosine pulse of the same duration. The 0.99 power bandwidth 

achieved for this pulse design is 0.5420 /T . In contrast to the pulse in Figure 19, this 

value is 18% better than the 0.99 power bandwidth of the untruncated root raised cosine 

pulse as shown in Table 11. This new pulse outperforms the root raised cosine pulse in 

term of the 0.99 power bandwidth, the first null bandwidth, and the spectral roll-off.  
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Figure 20 Comparison of duration 8T , new (with max 4k =  and 0.99Y = ) and truncated 
root raised cosine (with 0.3α = ) pulse shapes. 
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E NEW PULSES FRACTIONAL POWER BANDWIDTH PERFORMANCE 

Table 11 below shows favorable spectral occupancy of these new pulses for each 

g  and maxk . The 0.90, 0.95 and 0.99 power bandwidths are less than its corresponding 

first null bandwidth. Additionally, we observed that at 0.90 power, the new pulses from 

max5, 4g k= =  onwards outperformed the untruncated root raised cosine pulse in term of 

fractional power bandwidth. The new pulse at max8, 4g k= =  also outperformed the 

untruncated root raised cosine pulse in all listed bandwidth criteria. 

 

Table 11 Comparison of first null bandwidth and fractional power bandwidth w  for 
varied g and maxk , and untruncated root raised cosine with 0.3α = . 

 g
k
=
=max

2
2

 
g
k
=
=max

3
3

 
g
k
=
=max

4
4

 
g
k
=
=max

5
5

 
g
k
=
=max

5
4

 

First Null 
bandwidth 

1.5 /T  1.3333/T  1.25 /T  1.2 /T  1/T  

.0 90 power 
bandwidth 

0.6886 /T  0.6062 /T  0.5658 /T  0.5447 /T  0.5131/T  

.0 95 power 
bandwidth 

0.8040 /T  0.7020 /T  0.6503/T  0.6232 /T  0.5800 /T  

.0 99 power 
bandwidth 

1.0095 /T  0.8721/T  0.8000 /T  0.7642 /T  0.6945 /T  

 

 g
k
=
=max

8
5

 
max

8
4

g
k
=
=

 
untruncated 

root RC with 
0.3α =  

First Null 
bandwidth 

0.75 /T  0.625 /T  0.66 /T  

.0 90 power 
bandwidth 

0.4667 /T  0.4543/T  0.5385 /T  

.0 95 power 
bandwidth 

0.5119 /T  0.4895 /T  0.5933/T  

.0 99 power 
bandwidth 

0.5842 /T  0.5420 /T  0.6383/T  
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F. NEW PULSES WITH FRACTIONAL POWER BANDWIDTH 
CONTAINMENT INTERSYMBOL INTERFERENCE PERFORMANCE  

The following new pulses with the corresponding coefficients kc  are used in this 

section’s analysis. Note that xT  implies the transpose of x . 

Table 12 New pulses’ coefficients kc  for fractional power bandwidth containment ISI 
analysis. 

New pulse with duration 2T , max 2k = , and 

0.99Y =  
( )2 1 2

0.0791 0.0791
0.3162 0.1581

, , 0.4743
0.3162 - 0.1581
0.0791- 0.0791

Tj
j

c c c
j
j

− −

+⎛ ⎞
⎜ ⎟+⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

K  

New pulse with duration 3T , max 3k = , and 

0.99Y =  

( )3 2 3

0.0371- 0.0144   
0.1538 - 0.0578
0.2809 - 0.0722

, , 0.3285
0.2809 0.0722
0.1538 0.0578
0.0371 0.0144

Tj
j
j

c c c
j
j
j

− −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟+
⎜ ⎟

+⎜ ⎟
⎜ ⎟+⎝ ⎠

K  

New pulse with duration 4T , max 4k = , and 

0.99Y =  

( )

4

4 3 4

4

9.0056 10 - 0.0157
0.0165 - 0.0786
0.0810 - 0.1571
0.1899 - 0.1414

, , 0.2490
0.1899 0.1414
0.0810 0.1571
0.0165 0.0786
9.0055 10 0.0157

T
j

j
j
j

c c c
j
j
j

j

−

− −

−

⎛ ⎞×
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟

+⎜ ⎟
⎜ ⎟+⎜ ⎟
⎜ ⎟+
⎜ ⎟⎜ ⎟× +⎝ ⎠

K

New pulse with duration 5T , max 5k = , and 

0.99Y =  

See Section A of this chapter for this 

pulse’s coefficients kc   



                                                                 
                                                                                                            

61 

Unsurprisingly, the new pulse achieves zero ISI as its normalized eye pattern 

takes on the values of 1±  at the vertical axis when time t  is an integer multiple of T  as 

shown in Figure 21, Figure 22, Figure 23, and Figure 24 with varied g  and maxk  (see 

Table 12 for the respective coefficients kc ). Additionally, the horizontal openings are still 

within 0.3T± , thus indicating minimal impact in terms of sensitivity to jitter.  
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Figure 21 Eye diagram of waveform at the matched filter output for system using the 
new pulse with duration 2T  and 0.99Y = . 
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Figure 22 Eye diagram of waveform at the matched filter output for system using the 
new pulse with duration 3T  and 0.99Y = .  
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Figure 23 Eye diagram of waveform at the matched filter output for system using the 
new pulse with duration 4T  and 0.99Y = . 



                                                                 
                                                                                                            

63 

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t/T

no
rm

al
iz

ed
 d

ec
is

io
n 

st
at

is
tic

g = 5, kmax = 5, Y = 0.99

 

Figure 24 Eye diagram of waveform at the matched filter output for system using the 
new pulse with duration 5T  and 0.99Y = . 

 

Beyond these presented pulses, there are indeed many permutations and 

combinations of g  and maxk  available to devise an appropriate pulse for a required digital 

communications application. If the fractional power bandwidth constraint is included in 

the design of the pulses, excellent combinations of pulse durations, fractional power 

bandwidths and spectral roll off can be achieved.  

The next chapter (Chapter VI) concludes this thesis and recommends additional 

work in this area.  
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VI. CONCLUSION  

This thesis shows a methodology to design pulses for use in radio digital 

communications systems involving modulations such as PSK or QAM when spectral 

efficiency is important, such as is often the case for military radio communications 

systems tasked with the transmission of intelligence, surveillance, and reconnaissance 

information.  The pulses were designed to have finite duration, first null bandwidth as 

well as fractional power bandwidth between half the symbol rate (0.5 / )T  and the symbol 

rate (1/ )T  and to achieve the optimum spectral roll-off for a given first null bandwidth. 

Additionally, these pulses exhibit zero ISI and low susceptibility to jitter. The 

methodology is very general and can result in an infinite number of combinations of 

pulse durations, first null bandwidths, fractional power bandwidth, and spectral roll-offs, 

giving the designer a large trade space in which to trade one parameter against another to 

achieve design goals. Furthermore, the design methdology can be easily altered to include 

additional design criteria. Design examples were first illustrated in Chapter IV, with 

excellent combinations of first null bandwidths and spectral roll-off. More design 

examples were illustrated in Chapter V, including excellent design combinations of 

fractional power bandwidth and spectral roll-off. The spectral occupancy of these pulses 

was compared with that of root raised cosine pulses truncated to the same length with 

favorable results.  

Since Equation (3.18) is quadratic in kc  and since our solutions are only 

approximate, there is no guarantee, and indeed it is unlikely, that the solutions presented 

herein are unique. More work is needed to determine if simpler pulses can match the 

spectral desirability of those found in Chapter IV, for the same pulse duration ( )gT  and 

the same number of Fourier components ( )max2 1k + . It would be wise to see if the design 

algorithm of Chapter V, which calculates the fractional power bandwidth could be 

modified to constrain the fractional power bandwidth, perhaps resulting in pulses with 

even improved fractional power bandwidth. Investigation into the application of the 

additional constraint of low variation of instantaneous power, would be very interesting 

due to the deleterious effects of non-linear power amplifiers upon signals with high 
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instantaneous power, as found in many communications systems. Further, it would be 

wise to investigate the practicality of generating these pulses in practical transmitters, as 

well as design of the corresponding matched filters for receivers. Examples of relevant 

issues to consider include pulse fidelity versus number of samples per pulse, 

computational complexity, and ease or difficulty of synchronization. 

Since the root raised cosine pulse shape is in common use in many operating 

communications systems, including expensive military satellite communications systems, 

and since the pulses presented herein offer superior spectral efficiency, it seems wise to 

pursue this methodology further. Such increases in spectral efficiency offer the potential 

for enhanced information connectivity across the battlespace, potentially at a reduced 

cost. 
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